开展火电机组调峰试验研究,保障电网安全稳定运行

开展火电机组调峰试验研究,保障电网安全稳定运行

一、开展火电机组调峰试验研究 确保电网安全稳定运行(论文文献综述)

卜银河[1](2021)在《新配额制下高比例可再生能源消纳优化研究》文中研究表明中国已经宣布了面向2030年碳达峰和2060年碳中和的碳减排目标,这意味着在稳定推进煤电机组清洁化高效利用的同时,必须在未来十年内大幅提高可变可再生能源的装机比例、发电渗透率和消纳比重。2019年5月,中国发布了可再生能源电力消纳保障机制的新配额制,直接考核各省域年度可再生能源和非水可再生能源电力消纳量是否达到按分配消纳责任权重计算的责任消纳量,将作为电力调度机构按经济性最优或碳减排效果最优优化机组开停机计划和发电计划,和电力交易机构按同样的低碳和经济原则实现市场出清的重要约束条件。虽然强制配额政策下可再生能源消纳水平得到了基本保证,但高比例可再生能源的消纳仍需要高电力系统灵活性作为支撑。我国电源侧的不灵活燃煤火电机组占比高、可再生能源富集区的电网侧互联互通水平有限、需求侧响应和抽水蓄能等储能侧灵活性资源规模化效应不明显,源-网-荷-储的灵活性资源不足以支撑含高比例可变可再生能源的电力系统灵活性需求。通过多种灵活消纳措施提高电力系统灵活性已成为目前提高可再生能源并网消纳量的重要基础。(1)高比例可再生能源消纳优化模型构建及应用研究。以西北地区实际数据和HRP-38数据库为基础,通过提取西北地区电网结构和电源结构的特征,并充分考虑电力系统负荷和非水可再生能源出力的特性,搭建了具有电网节点结构复杂、机组数量多和可再生能源占比高等特点的实际案例场景。基于此,本研究以传统基于安全约束的机组组合(SCUC)和经济调度模型(SCED)为基础开发了适用于高比例可再生能源的消纳优化模型,适用于大规模机组组合、高比例可再生能源并网情景下一日运行优化决策的快速求解。进而构建了四类提升电力系统灵活性的灵活消纳措施情景,电网侧以提高省间输电能力和区外输电容量为代表,需求侧以提高负荷可灵活调节水平的需求侧管理为代表,电源侧以火电机组深度调峰改造为代表,评估了四种灵活消纳措施对西北地区高比例可再生能源消纳的影响。(2)新配额制下高比例可再生能源消纳优化模型构建。在高比例可再生能源消纳优化模型基础上,引入新配额制消纳责任权重的约束,并对其中非线性部分进行线性化,构建了基于调度运行优化的新配额制下高比例可再生能源经济消纳优化模型、低碳消纳优化模型以及经济与低碳双目标消纳优化模型。首先是以区域整体发电运行成本最小为优化目标、基于省域互联的单目标经济消纳优化模型;随后引入305台机组的碳排放参数,以区域整体总碳排放为目标,构建了基于省域互联的单目标低碳消纳优化模型,接着在约束方面进一步考虑38个节点间的线路传输容量和机组在各节点的分布限制,构建基于网架互联的单目标低碳消纳优化模型;最后基于区域整体碳排放和系统购电成本最低构建省域互联的经济与低碳双目标消纳优化模型,并对比展开新配额制下高比例可再生能源低碳消纳的案例分析。(3)新配额制下高比例可再生能源消纳优化模型应用研究——以西北地区为例。基于新配额制下高比例可再生能源消纳优化模型,以西北地区为模型应用场景,首先评估了新配额制对西北地区省域可再生能源经济消纳的影响,以及新配额制下四项灵活消纳措施对高比例可再生能源消纳的促进效果,并将其与新配额制实施前灵活消纳措施的效果作比较。随后分析了新配额制对低碳消纳的影响,并与经济消纳的结果作比较,结果表明当西北地区配额较低时,整体上以经济消纳为目标的优化模型结果具有成本优势且减排效果与低碳消纳接近,但当配额水平较高时,整体上以低碳消纳为目标的优化模型减排效果明显更优而增加的发电成本反而较小,此外还单独分析了区域内网架结构对低碳消纳优化结果的影响。最后对新配额制下经济与低碳双目标消纳优化结果进行了分析,与单目标低碳消纳相比,双目标权衡后,区域碳排放水平接近但消纳指标变劣,并且当风光可以平价上网时将出现较严重的限电情况。(4)新配额制下基于市场交易的高比例可再生能源消纳模型构建及应用研究。该部分研究首先基于确定性成本报价,构建了省域互联的日前电能量市场和日前辅助服务市场联合出清模型,以西北地区为案例,计及各省域间和区域整体主网架约束,讨论电能量和辅助服务市场联合出清对新配额制下促进高比例可再生能源消纳的影响。结果表明,双市场联合出清模型的消纳水平和区域整体发电成本介于经济调度和低碳调度模型之间,不同辅助服务需求规模下各省域弃电量和弃电率指标变化明显,而消纳量和消纳比重指标变化不大。随后进一步构建了考虑火电机组辅助服务市场报价不确定性的双市场鲁棒出清模型,得出了 305台机组在五类辅助服务市场和电能量市场的联合出清结果,并分析了报价对区域可再生能源消纳、辅助服务费用和碳排放的影响。本文在以上模型应用研究的基础上,提出新配额制下高比例可再生能源消纳优化的政策建议,新配额制下含高比例可再生能源的电力调度和交易提供决策支持。

杜鸣[2](2021)在《火电机组灵活运行下的负荷频率控制优化研究》文中提出随着我国能源转型的不断深入,新能源正在向主体能源进行过渡,开展高比例新能源电力系统中的稳定性研究成为了当前的研究热点。由于目前我国的电力系统不具备足够的灵活性,导致了严重的弃风、弃光现象。为提升电力系统灵活性,促进新能源消纳,大部分火电机组积极参与灵活性改造。灵活性改造后,火电机组在不同工况下运行具有不同的有功功率调节特性,大范围下的火电机组灵活运行将会造成系统内有功功率调节特性的变化。本论文关注电力系统频率稳定性方面,在能源转型和灵活性改造的背景下,将全面分析火电机组灵活性改造对机组本身和电力系统频率调节能力造成的影响。所以,本文将从以下几个方面开展研究工作:(1)基于机理分析,本文推导了汽轮机及其调速系统模型各参数的计算方法。利用历史运行数据,建立了汽轮机及其调速系统在灵活性改造之后多个工况下的线性模型。然后对不同模型施加阶跃信号,仿真结果显示汽轮机及其调速系统的响应速率随着负荷的降低而下降。该现象表明低负荷下机组的调频能力减弱。(2)根据一次调频响应过程的一般形式,本文确定了锅炉蓄热充分且安全的极限利用形式,并提出了一种一次调频综合评估方法。然后针对评估方法中的每一个参数设计了求解算法,并利用示范机组的历史运行数据对全工况下的一次调频极限响应过程进行了定量描述,根据该结果进一步计算了全工况下的调差系数。结果显示,随着机组负荷的下降,锅炉释放的总热量逐渐减少,而受到低流量、低流速的烟气等的影响,一次调频过程需要支撑的时间却相应增加。总体来说,机组一次调频响应性能随机组负荷的下降而降低,调差系数同样随着机组运行工况的下降而减小。(3)综合考虑一次、二次调节的调节作用,本文首先分析了灵活运行火电机组对频差信号的响应能力。单台机组运行场景中,机组侧对负荷扰动的抑制能力随着机组运行工况点的下降而降低。然而多机组运行时存在机组组合的问题,必须具体问题具体分析,难以得到普适性的结论。因此,本文考虑了电源侧两种典型的运行方式,在负荷频率控制的框架下完成了简单电力系统建模。仿真结果显示,无论火电机组采用深度运行或者启停运行方式,随着风电渗透率的增加,系统对负荷扰动的调节能力都呈下降趋势,但是深度运行方式能够保留系统转动惯量,进而保留系统的抗负荷扰动能力。(4)火电灵活性的开展加大了系统内多机协调问题的复杂度,本文提出了一种基于功率因子动态轨迹规划的优化控制策略。首先,本文将LFC频率调节区中的各机组功率分配因子设置成自由状态,并借由无人机动态轨迹优化的思想,对功率分配因子在震荡区的动作轨迹进行动态规划,建立了以调节过程经济性和频率调节效果的双优化目标,并结合其余约束条件,将该互补协调问题转化成一个多目标优化问题。以典型三区域九机组系统为算例对本算法进行了仿真,结果显示该算法能够在LFC过程中调用不同机组的不同优势,同时提升调节过程中的频率调节效果和调节经济性。最后通过蒙特卡洛模拟的方法对本算法进行了稳定性的验证。(5)为应对高比例新能源接入下的电力系统频率稳定性恶化问题,针对现代电力系统规模化、复杂化等的特点,本文提出了一种改进型模糊自抗扰控制方法,在改进型自抗扰控制器的基础上添加模糊规则,对自抗扰控制器参数提供了自适应补偿量,该算法能有效提升负荷频率控制效果,基于IEEE9节点模型的仿真结果验证了算法的有效性。

陆昊[3](2021)在《新型电力系统中储能配置优化及综合价值测度研究》文中认为自“3060”双碳目标的提出,新能源在未来电力系统中的主体地位得以明确。国家进一步推进实施可再生能源替代行动和“清洁低碳安全高效”能源体系建设,构建以新能源为主体的新型电力系统。但可再生能源大规模并网后,其出力的不确定性会给电网的运行带来挑战。当前储能被认为是解决新能源不确定性的最主要工具,是新型电力系统安全稳定运行的保障。然而,储能具有投资成本高、投资回收期较长、自负盈亏能力差等特性。这些不利因素严重制约了我国储能产业的发展。储能在新型电力系统中配置后,能给系统中的其他主体带来提高传统发电机组运行效率、减少电网线损和减少排放等外部价值,促进新型电力系统从外延扩张型向内涵增效型转变。但这种外部价值并未在储能投运商的收益中予以体现,是目前储能经济性差的一个重要原因。为促进我国储能产业健康可持续发展,提高储能资源的利用效率,亟需从储能投运商的视角,对新型电力系统环境下储能的选型和选址定容等优化问题进行研究,最大化储能的收益;在此基础上,从社会福利的视角,对储能在新型电力系统中综合价值进行科学测度,并据此对储能综合价值的补偿机制进行设计。鉴于此,本文主要研究内容如下:(1)新型电力系统特征及储能应用分析。首先,对新型电力系统的特征进行梳理分析;其次,对新型电力系统中储能在发电、电力输配和用户侧领域的应用进行分析梳理;最后,对储能系统的类型及技术特性进行对比分析。(2)储能在新型电力系统中多应用场景选型优化研究。首先,基于模糊德尔菲法,从技术、经济、效率和环境四个角度,建立一套从多个维度反映储能特性,适用于储能在新型电力系统中不同应用场景的评价指标体系;其次,采用贝叶斯最优最劣法和模糊累计前景理论构建综合评价模型,该模型能够最大限度地利用数据信息,并且可以同时考虑决策者不同的风险偏好程度,对各应用场景下的储能进行综合排序,输出相应场景下的最优选型方案。(3)考虑新型电力系统中多元随机干扰的储能选址定容研究。首先,构建储能选址定容优化双层模型,对新型电力系统中多元随机干扰不确定性进行处理,采用鲁棒性改造方法,建立风电、光伏和负荷的不确定性集合来描述风光出力和负荷的不确定特性;其次,给出双层规划模型的求解方法,其中上层模型采用结合最优保存策略和多点均匀交叉等方法的改进遗传算法求解,下层模型采用列与约束生成(C&CG)算法将其转化为相应包含主问题和子问题的优化模型进行求解。(4)新型电力系统中储能综合价值测度研究。首先,基于外部性理论,对储能在新型电力系统中运行后,给相关利益主体带来的正外部性进行梳理分析;其次,基于储能在新型电力系统中的最优配置场景,结合正外部性分析,构建计及外部性的储能综合价值测度模型,测度储能在新型电力系统中的综合价值,并且根据目标函数总成本中各子成本项的对比,能够显示储能综合价值的构成和具体流向,进一步明确储能在新型电力系统的综合价值形成机理。(5)新型电力系统中储能补偿机制研究。首先,利用技术经济中贴现现金流相关分析指标,从计及和不计及综合价值两个角度对储能进行经济对比分析,并通过讨论成本和综合价值实现度的不同场景,对储能进行盈亏平衡分析;其次,基于储能综合价值测度结果,将环保性和风险性纳入对补偿的考量,运用改进的Shapley方法,结合“谁受益,谁补偿”和“按价值贡献度”原则设计储能综合价值补偿机制,搜寻对储能综合价值补偿的最佳系数,确定各相关利益主体得到收益中需要返还给储能投运商的补偿数额。基于上述研究,本文得出以下主要结论:(1)抽水蓄能是可再生能源消纳和等效节约电网投资场景下的最优选择,锂离子电池是辅助服务和需求响应管理场景下的最优选择。抽水蓄能、锂离子电池储能和压缩空气储能在四个场景下排名前3,均优于其他3种储能系统。四种场景下指标重要性排序显示,储能在不同应用场景下,同一性能指标的重要性是不同的,并且最后的敏感性分析显示,决策者的风险规避程度对压缩空气储能、飞轮储能和钒液流电池储能的评价结果影响较大,高风险规避情景下排名较低,低风险情境下其综合性能值提高,排名会有所上升。(2)储能选址定容结果显示,储能会配置在新型电力系统中的重要传输节点和靠近可再生能源接入节点,可再生能源的接入会提高储能最优配置容量,并且储能系统的充放电运行策略会受可再生能源出力特性的影响。本文构建的储能选址定容优化双层模型能够有效降低新型电力系统中多元随机不确定性影响,提高规划结果的抗干扰能力,降低可再生能源出力和负荷预测的偏差给系统运行带来的影响。(3)储能在含高比例可再生能源的新型电力系统中综合价值更大,在算例系统中的日价值为5.78万元。在不含可再生能源的场景下,储能综合价值占主要部分的是减少机组启动成本价值和减少机组燃料价值,其占比分别达到了74.47%和20.07%。在含高比例可再生能源的场景下,储能综合价值占主要部分的是减少线损价值、减少机组燃料价值和减少机组启动成本价值,其占比分别达到了41.18%、21.80%和33.22%。结合传统燃煤机组的出力曲线、单位发电煤耗变化和储能充放电运行情况可知,储能显着减少了传统燃煤机组承担的负荷峰值,降低了峰谷差异,能够让传统燃煤机组处于更加经济高效的运行状态,进而减少机组的单位煤耗。从含可再生能源场景的结果来看,若能合理地配置储能系统,会减少远距离输送电能的情况,减少线路损耗成本。(4)储能经济分析结果显示,从不计及储能综合价值的角度来看,储能的投资净现值为负,内部收益率为2.47%,远低于6%的参照值。从计及储能综合价值角度来看,储能得到的收益净现值为正,经过9.68年可收回初期的全部投资,储能投资的内部收益率为6.70%,因此对于新型电力系统来说投资储能是有益的。盈亏平衡分析结果显示,当成本维持当前水平时,储能综合价值需要实现98.82%才能弥补其成本;当储能综合价值实现度为0时,储能需要减少当前成本的20.07%才能够达到盈亏平衡。通过政策梳理发现,当前我国对储能商业化的引导重点在激励储能参与辅助服务,相关机构也在建立辅助服务市场,并在不断完善区域及地方的辅助服务市场交易规则和结算机制,缺少有关储能综合价值的补偿政策和机制。基于改进Shapley值法的储能综合价值补偿结果显示,储能得到的补偿占其给新型电力系统带来综合价值的38.58%,其中发电企业需要支付56.64%,电网公司需要支付43.36%,支付额为发电企业和电网公司分配所得价值收益的63.00%。为保障新型电力系统中储能综合价值补偿机制的有效实施,本文从以下三个方面提出保障措施:1)建立补偿监管机制,保障储能补偿通道顺畅;2)完善补偿配套政策措施,设计储能补偿发展规划;3)拓宽补偿资金来源渠道,支撑储能补偿机制实施。储能综合价值的补偿是一个渐进性、持续性、全局性与战略性的实践过程,需要长时间、分阶段、有步骤地推进,中央和地方相关部门需要编制科学合理的补偿发展规划,以保证补偿工作的持续开展与有序进行,促进储能产业在新型电力系统中的健康可持续发展。本文对储能在新型电力系统中的配置优化和综合价值测度进行了一定的研究,在未来的科研工作中,还需深入研究储能综合价值中分项价值的形成机理和测度方法,为构建储能补偿机制提供更准确的经济效益参考,以期为我国储能产业的可持续发展提供参考建议。

慕昀翰[4](2021)在《基于燃煤机组深度调峰安全性条件下负荷优化分配》文中研究表明为实现我国2030年碳达峰、2060年碳中和、构建以新能源为主体的新型电力系统的战略目标,以风电和太阳能等可再生能源为主的新型电力系统需要一部分灵活、高效、安全和环保的火电机组进行运行支撑。灵活性越好、安全可靠性越高的机组在这种新型电力系统中所担负的调峰任务就更多。在保障燃煤机组深度调峰安全性的条件下,按照机组的设计和运行特性优化并安排最佳的调峰负荷就成为一个十分重要的工作。随着电力辅助服务市场的推广,火电机组调峰的积极性得以提升,许多火电厂进行机组灵活性和节能改造以承担调峰任务。本文旨在对电厂各机组进行负荷优化分配,在降低煤耗的同时考虑机组寿命损耗与辅助服务市场收益,以期提升电厂经济性并保障安全性,提升企业综合竞争力。首先,本文对负荷优化分配的目标函数模型以及模型各项约束条件作了简述。运用能量经济学方法将机组参与调峰时的燃料损耗和寿命损耗定义为金钱流,考虑机组调峰运行时参与辅助服务市场的获得收益,建立了新的目标函数模型。其次,考虑了机组煤耗特性变化这一现象,基于大数据分析理念,结合灰色关联分析法和神经网络算法,对历史运行数据进行筛选和训练,选取与机组供电煤耗率关联度较高的参数投入神经网络计算模型,实现对机组煤耗的动态计算。选取样本的动态计算结果与样本实测值最大绝对误差为1.1 g/kW·h,平均绝对误差为0.48g/kW·h,计算结果较为准确。最后,考虑机组运行安全性问题,对汽轮机高压转子进行建模计算,获得了转子在典型启动工况下的温度场和应力场,确定了应力集中现象最严重部位,简化了计算模型,并对不同变负荷幅度下转子的寿命损耗进行了计算。简述了电力辅助服务市场的运营机制和收益模式,确定收益计算方法。将各项约束编入遗传算法用以求解厂级机组负荷优化分配问题,并进行了实例计算。计算结果表明,机组参与调峰会加大对关键设备的寿命损耗,但考虑参与辅助服务市场的获得收益而言,其总体收益是向增加的方向发展的。

吴静[5](2021)在《分布式资源聚合虚拟电厂多维交易优化模型研究》文中提出化石能源的大规模利用在推动我国经济高速发展时,也加剧了能源与环境间的矛盾,可再生能源的高效利用成为能源结构优化的主要方向及可持续发展的重要支撑。为了进一步合理化能源结构、探索市场对资源配置的决定性作用,我国新一轮电力体制改革将充分发挥市场化功能,建立公平合理、竞争活跃的电力市场,挖掘发电侧多源竞争活力。而分布式可再生能源具有单体容量小、地域分散、出力波动的特点,增加了电网统一调度的难度,也为配网运行带来风险。因此,实现对分布式资源的聚合管理,提高可再生电力的消纳水平与市场竞争水平是未来分布式可再生资源发展的重要基础。基于此,本文结合虚拟电厂技术,聚合多分布式资源进行运行优化建模,同时,结合我国电力市场化改革路径,对虚拟电厂参与中长期电力市场、日前市场及日内-实时市场等进行交易优化建模,并基于我国未开展电力现货市场运行地区的实际情况,对虚拟电厂参与辅助服务市场交易进行了建模分析,从而形成了对虚拟电厂参与多级电力市场交易下的优化研究。本文的主要研究内容如下:(1)梳理了虚拟电厂的基本概念、特点、典型项目模式及类型功能。首先对虚拟电厂的定义及特点进行了详细介绍,分析了虚拟电厂的典型结构。其次,从国内和国外两方选取典型虚拟电厂项目展开研究,选择了德国、欧盟等国外虚拟电厂典型项目分析其结构及供能,同时结合上海、冀北、江苏及天津的虚拟电厂项目,总结了我国典型虚拟电厂项目的实施内容及突出效益。最后,总结虚拟电厂类别,提出虚拟电厂参与电力市场交易的主要可行路径,为后续章节虚拟电厂电力交易优化模型构建的研究做出铺垫。(2)提出了考虑“电-气”互转的虚拟电厂低碳运行优化模型。首先,结合“碳减排”的政策导向,考虑引入P2G技术后虚拟电厂中的能源流向,提出接入“P2G”设备的虚拟电厂结构。其次,结合虚拟电厂中的能量流向及初步测算,引入碳交易以实现碳原料的充分供给,基于“零碳排”目标及经济性目标,构建考虑“电-气”互转的虚拟电厂多目标运行优化模型。最后,设置多情景分析引入P2G设备的虚拟电厂运行方案,并进一步分析了碳交易价格对虚拟电厂运行影响的价格传导影响机理。(3)提出了中长期市场交易下虚拟电厂的交易策略。首先,分析了我国电力市场的两种模式,总结了中长期市场下的交易品种和交易方式;其次,梳理了目前市场中中长期合约电量分解的相关规则,提出固定电价合约与差价合约机制下虚拟电厂的收益模型;然后,结合可再生能源配额制及绿色证书交易机制,构建了计及可再生能源衍生品的虚拟电厂中长期合约交易优化模型;最后,在综合绿证交易、合约交易及各单元出力成本的基础上,计算不同可再生能源出力情景下虚拟电厂在集中式电力市场交易规则和分散式电力市场交易规则下参与中长期市场合约交易的收益。(4)提出了日前市场下虚拟电厂的交易优化模型。首先,建模分析了虚拟电厂参与日前市场交易的不确定性来源;其次,提出日前市场中虚拟电厂出力的不确定性综合模型,从发电预测方面进行预测方法的优化改进,构建了基于EEMD-CS-ELM方法的风光出力预测模型,并结合CVaR理论,构建基于预测方法优化与CVaR的虚拟电厂日前市场交易优化模型;最后,选取典型地区对进行算例分析,验证了改进预测方法的有效性和模型的可实现性。(5)提出了基于主从博弈的虚拟电厂三阶段交易优化模型。首先,分析日前市场、日内市场与实时市场的关联耦合关系,提出虚拟电厂可在日内交易中通过博弈达到优化均衡。其次,结合日前、时前、实时三个阶段,以虚拟电厂收益最大的目标,考虑不同阶段下的收益构成,分阶段构建相关优化模型。最后,参考北欧地区丹麦市场2020年4月的现货市场交易数据,设计进行虚拟电厂的市场交易算例,以验证所构建的三阶段交易优化模型的有效性。(6)提出了基于信息间隙决策理论的虚拟电厂辅助服务交易优化模型。首先,结合P2G技术与调峰补偿机制的联合优化,提出参与调峰辅助服务市场的含P2G虚拟电厂的交易路径及内部物理模型;其次,考虑市场交易中的负荷不确定性,分别以不考虑负荷不确定性及考虑不确定性两种前提条件下提出虚拟电厂的交易优化模型;最后,结合拉丁超立方抽样场景生成法和距离测算场景削减法,处理源侧不确定性,联合多目标粒子群算法、帕累托最优解筛选模型和模糊理论对所提模型进行求解,并设计算例进行多情景分析。

赵亚威[6](2021)在《多电源电力系统多目标优化调度与决策方法研究》文中认为水电、风电、光伏等可再生能源电站开发规模的不断扩大,推动了我国电力系统电源结构多元化发展进程。然而自然条件的不确定性和过快的开发速度,导致一些区域电网水风光电能消纳受阻问题严重。“西电东送”等输电工程的建设一定程度上缓解了水风光电站弃电问题,但如何协调多个互联电网之间的利益冲突成为亟待解决的多目标优化问题。因此,开展多电源电力系统多目标优化调度与决策方法研究,寻求最优的规划与调度方案,对于优化电源结构、提升可再生能源消纳能力有着重要现实意义。本文以多电源电力系统为研究对象,重点针对电源规划、调度方案优化与决策等工作展开深入研究,取得的主要成果如下:(1)电力系统中长期电源规划模型研究。针对传统电源规划模型仅能考虑单一类型补充电站的不足,提出了可以同时考虑多种类型补充电站的中长期电源规划模型。该模型以补充电站投资成本与运行期内系统总化石能源消耗成本之和最小作为追求的目标,在系统缺电情况下可同时考虑补充水电、火电、风电、光伏四种类型电站,扩大了模型的适用范围;根据模型特点设计了一种嵌套POA-DPSA算法,缓解了维数灾问题,降低了求解难度。实例应用结果表明,传统电源规划模型仅为所提模型的一种特殊情况,所提模型能够获得多种类型补充电站最优组合方案。(2)考虑水风光就地消纳的电力系统短期优化调度研究。提出了弃水电量的计算方法;考虑水风光电能消纳问题,将水风光弃电量转换为弃电惩罚成本加入到传统模型总成本目标中,改进了含水风光电力系统短期优化调度模型;提出了两种典型非线性表达式的线性化方法,运用该方法将模型做了线性化处理,使其转换为标准的混合整数规划模型,以便采用专业线性求解器获得最优结果。云南区域电网实例计算结果表明,相较于传统模型结果,改进模型能够在保证总成本最小前提下,大幅提升水风光电能消纳程度。(3)考虑水风光外送消纳的多电网互联多目标优化调度研究。考虑多电网互联系统中各电网利益主体不同,以各电网最小化运行成本为优化准则,构建了多电网互联多目标优化调度模型;针对NMOPSO在求解含复杂约束模型时会遇到收敛结果不可行的问题,设计了滚动修正策略(RCS),对迭代计算过程中出现的不可行解进行修正,使算法始终在可行域内搜索优化解,从而提出了 RCS-NMOPSO。运用RCS-NMOPSO进行实例分析,并根据与其他算法的对比结果说明了改进算法获得的Pareto最优解集能够兼顾可行性与优越性。(4)多电网互联多目标优化调度方案决策研究。针对基于马氏距离TOPSIS在评价矩阵的协方差矩阵不可逆情况下决策失效问题,采用正则化方法对协方差矩阵进行修正,证明了修正后的协方差矩阵必定可逆,进而提出了基于改进马氏距离TOPSIS;构建了多电网互联多目标优化调度方案评价指标体系,以三个区域电网互联系统多目标优化调度方案决策为例,运用基于改进马氏距离TOPSIS对待评价方案进行优劣排序,获得了最佳方案,并参照对比分析结果阐明了改进方法的普适性。

万宏斌[7](2020)在《660MW超超临界火电机组深度调峰能力试验研究》文中进行了进一步梳理近十年以来,随着我国电力行业的迅猛发展与我国经济形势的转变。作为常规电力行业中起主导地位的火力发电厂,火电厂的装机容量占比在逐步降低,增长速度持续降低。风电、太阳能、光热等清洁能源机组的装机容量持续增高。但是,随着清洁能源机组装机容量的增大,伴随而来的是弃风率、弃光率、弃水率也在持续逐年增高。为了进一步降低电网中的弃光率、弃风率、弃水率,根据电网中现阶段的电源结构,同时保证电网能够安全稳定的运行。那必须要求火电机组,尤其是大容量机组具备深度调峰能力。即在电网调峰的过程中既要保证机组负荷降至50%以下,又要保证机组的安全稳定运行,能随时接待满负荷。以上要求,就给燃煤发电厂带来了诸多困难和危险,例如:锅炉低负荷燃烧不稳定、水冷壁中水动力不足、机组可能要转湿态运行、环保参数无法控制甚至超标、辅机设备退出为单侧运行。上述一系列安全问题咎待解决,因此,研究火力发电机组的灵活性调峰对今后火力发电行业的发展具有深远的意义。西宁火电660MW超超临界机组,为响应国家深度调峰政策,并进一步提高深度调峰过程中的经济效益,进行了深度调峰能力试验。在试验过程中,研究了本机组低负荷燃烧的相关内容,计算比较机组效率等经济指标。同时,在满足AGC等细则考核的前提下,进行协调方式下的升降负荷试验。通过试验,对西宁火电660MW超超临界锅炉机组的深度调峰能力进行了验证。结果表明:通过对该电厂660MW直流锅炉进行最低稳燃负荷试验研究,该机组在燃用设计煤种下,该电厂具备深度调峰能力,锅炉最低的稳燃负荷在30%BMCR,能够达到锅炉厂家设计值。为了提高燃煤机组的灵活性,作者分析了国内同等容量的燃煤电站,在变负荷运行的工况中的实际运行参数,涉及机组的诸多方面的内容,分析和研究了其中影响燃煤机组调峰中经济性的各个因素,提出了燃煤电站机组深度调峰在实际生产运行中的优化解决方案,为我国燃煤电站在深度调峰运行与改造方面提供有力的技术支撑。通过燃煤机组的调峰方案技术的研究与分析,为电网中能够大限度的进行新能源消纳,节约不可再生资源,并降低污染物排放提供了借鉴与技术支持。

杨萌[8](2020)在《可再生能源高渗透率电力系统的有功辅助服务市场机制设计与出清模型研究》文中研究指明可再生能源高渗透率环境下,电力系统运行特性发生了质的变化,电力灵活性资源调控的市场机制成为焦点问题。本文针对可再生能源高渗透率电力系统,分别从市场机制、供给侧策略和需求侧策略的角度,围绕激励电力灵活性资源的有功辅助服务市场机制及供给侧和需求侧响应进行了系统和深入的研究。从市场机制设计的角度,分别就我国“厂网分开”的电力体制下尚未建立和正在建立电力现货市场的两种现实情况及可再生能源发展趋势,针对可再生能源高渗透率电力系统运行面临的调峰问题和爬坡等问题,设计了可再生能源高渗透率电力系统的有功辅助服务市场总体架构,为分阶段、系统性地建立灵活性资源市场激励机制提供了一种实现路径。具体分析了在我国现货市场建立前,调峰市场的属性及其设计前提,设计了可再生能源参与的调峰市场机制及其向现货市场过渡的方案,并以算例验证了该方案的可行性。根据我国可再生能源发展和电力市场发展预期,构建了一种电能量现货市场与多种有功辅助服务市场的联合出清模型。该模型实现了电能量、向上调频服务、向下调频服务、向上旋转备用服务、向下旋转备用服务、向上非旋转备用服务、向下非旋转备用服务等7个不同交易品种的联合出清。算例验证该模型可以体现不同灵活性资源的技术特点和经济价值,并适应可再生能源的不确定性,能促进可再生能源的经济消纳。从供给侧的角度,为提高灵活性资源的利用效率,建立了基于数据驱动的调频服务需求量化模型。基于对现有调频服务需求量化方法的对比分析,针对可再生能源高渗透率电力系统的复杂场景,采用数据驱动的方法预测调频服务需求。通过分离调频服务对应的时间分量,基于隐马尔可夫模型得到假设无调频措施介入情况下的潜在频率偏差,并以此为依据预测系统对于调频服务的短时需求,算例验证了该方法可以有效实现在线快速的准实时调频需求预测。从需求侧响应分析的角度,为广泛吸纳新型灵活性资源,分别针对不同规模的需求侧资源参与辅助服务市场投标行为,提出了结合生产计划的工业电力用户双层报价决策模型,以及基于条件约束的集成商资源集成报价决策模型。算例结果表明,所提出的决策模型能够为需求侧资源参与响应现货价格和参与辅助服务市场提供有效的决策支持,能够在本文所提出的有功辅助服务市场机制中得到有效激励。论文提出的有功辅助服务市场机制设计与出清模型,有利于激励需求侧参与辅助服务竞争,改进有功辅助服务调控手段,优化现货市场与辅助服务市场出清模式,提高整个电力系统灵活性资源的充裕度和辅助服务能力,进而促进电力市场高效运营。

秦云甫[9](2020)在《市场环境下储能运营经济性评估及交易优化模型研究》文中研究指明近年来,随着中国电力能源供给侧结构不断调整,电网中接入可再生能源比例越来越高。然而,以风光为代表的可再生能源发电自身具有间歇性、随机性等特点,导致大规模并网拉大了负荷峰谷差,在现有调峰资源不足条件下,系统调峰压力越来越大。为缓解调峰困境,各电网纷纷展开火电机组深度调峰,但深度调峰会增加运行成本。这意味着需要解决如何平衡火电调峰经济性与性能,及如何挖掘和优化利用新调峰资源。储能既能平抑供给侧可再生能源发电的随机性,根据需求侧负荷动态变化做出及时响应,通过存储与释放电能,使得电力实时平衡的“刚性”电力系统变得更加“柔性”,有利于储能的大规模并网。然而,国家发展改革委、国家能源局关于印发《输配电定价成本监审办法》的通知(发改价格规[2019]897号)明确抽水蓄能电站、电储能设施、电网所属且已单独核定上网电价的电厂的成本费用不计入输配电成本,这意味着如何建立储能市场化机制将成为影响储能在电力系统中应用推广及其商业价值实现的关键问题。本文主要研究内容如下:(1)分析了国内外储能技术发展现状、相关政策及在电力系统中的应用前景。首先,从储能技术发展现状和应用现状两个角度,对比了全球、中国储能发展和应用规模,并对未来储能发展趋势进行了预估。然后,对比分析不同储能技术的发展前景,梳理了中国储能技术发展的相关政策和存在的问题。最后,结合储能产业发展的典型特征,分析了储能在电力系统中应用现状及应用前景。(2)提出了储能发展成本演化趋势及最优设备选型模型。针对物理储能、电化学储能及其他类型储能,对比了不同储能技术的成熟度,提出基于全寿命周期的储能度电成本测算模型,并将学习曲线引入储能成本分析中,确立不同储能成本的演化趋势。最后,从经济性、社会性、环境性和技术性等4个维度构建储能设备类型优选评估指标体系,并提出基于一致性原则和模糊最优最劣方法的储能设备选型评估模,实例分析结果表明:尽管锂离子电池的经济性较差,但其社会性、环境性和技术性相对较好,综合效益最大,发展前景广阔。(3)提出了储能参与电量市场交易经济性界值分析模型。考虑清洁能源去补贴情景,提出了考虑清洁能源出力波动性的净负荷曲线概念,并提出了峰谷时段聚类优化模型,灵活划分负荷曲线的峰、平、谷时段。进一步,从全寿命周期角度出发,分析储能参与电量市场的成本和收益,提出储能最优峰谷分时价差测算模型,并对锂离子电池和液流钒电池开展实例分析。结果表明在2025年和2030年锂离子电池和液流巩电池单位容量投资成本下降至7500元/kW、4900元/kW和5500元/kW、2800元/kW,对应临界盈利价差分别为0.68元/kW·h、0.79元/kW-h和0.45元/kW·h、0.52元/kW·h,已接近抽蓄和压缩空气储能临界盈利价格。(4)提出了储能参与电量市场多级协同交易优化模型。考虑电量市场存在长期合约、日前现货和实时平衡三级时差,分析储能参与不同电力市场策略交易的差影响,分别提出储能参与电力合约交易效益协调模型、储能参与微网日前交易优化模型以及储能参与风电实时交易优化模型。通过构建上述三级市场交易模型,实现了储能参与“中长期-日前-实时”三级市场的逐级优化,特别是实时平衡市场,考虑了风电的不确定性,构造了风储联合竞价交易优化模型。最后,通过对上述三级市场交易优化模型开展实例分析,确立了所以交易策略的适用性。(5)提出了储能参与辅助服务市场交易经济性界值分析模型。对比了目前中国西北区域市场和东北区域市场储能参与调峰交易规则,并从经负荷率视角出发,研究了储能参与调峰交易的最优容量。进一步,以西北区域青海储能调峰交易规则为指导,提出了储能参与辅助服务市场交易经济性界值分析模型。结果表明:1)储能参与调峰的最佳填谷比例20%,电网的最佳储能系统容量占比9%;2)当调峰小时数在500h时,储能调峰价格应达到1.385元/kW·h,若存在峰谷分时电价,则储能调峰价格为1.008元/kW·h,若享受清洁能源发电补贴(50%),调峰价格可降低至0.585元/kW·h;3)若完全市场化方式进行成本回收,则调峰价格为1.602元/kW·h。随着储能调峰小时数增加,储能调峰价格阈值也逐渐下降。(6)提出了储能参与调峰辅助服务市场交易优化模型。分别测算了火电、储能和灵活性负荷参与调峰辅助服务交易的成本,其中,考虑了火电常规调峰、深度调峰和投油调峰三种调峰状态。然后,构造了储能参与光伏调峰辅助服务交易优化模型,对比了储能参与前后不同天气状态下的光伏调峰辅助服务交易方案。最后,提出了火电、储能和需求响应联合开展调峰交易优化模型,算例分析结果表明:当火电、储能、需求响应联合参与系统时,系统调峰成本和弃风率达到最低,表明多源联合调峰具有协同优化效应,会给系统带来增量收益。(7)设计了储能参与电力市场交易价值分析及商业模型。综合考虑储能在辅助服务、电网、电力用户以及可再生能源接入等5方面的综合价值,分析了储能系统的功能作用和综合价值,遴选了储能综合价值评估指标体系,并从经济效益、外部效益和减排效益等维度分别测算了储能给电源侧、电网侧和用户侧带来的综合价值。进一步,分别设计了针对电源侧、电网侧和用户侧的储能运营商业模型,最后对不同商业模式的盈利性开展实例分析。

邢通[10](2020)在《大规模风电参与电力市场交易机制及优化模型研究》文中提出2015年3月中共中央国务院印发《关于进一步深化深化电力体制改革的若干意见》(中发[2015]9号),新一轮电力体制改革开启,确定了“管住中间、放开两头”的体制架构,充分发挥市场在资源配置中的决定性作用。通过几年的发展,我国电力市场建设成效初显,中长期交易市场实现常态化运行,八个现货市场试点稳步推进,中长期交易为主、现货交易为补充的电力市场体系初具雏形。在此基础上,以风电为代表的新能源发展环境发生很大变化,随着发用电计划放开比例逐步扩大,传统的全额保障性收购政策将退出舞台,市场成为新能源消纳的重要途径。由于风电的波动性和随机性,风电参与市场存在天然劣势,如何根据我国实际情况设计风电参与中长期、现货、辅助服务等全市场体系交易机制,从而实现新能源消纳的目标,是我国电力市场建设需要重点解决的问题。因此,本文重点考虑风电的消纳问题,从中长期市场到现货市场,由日前市场深入到实时市场和辅助服务市场,研究电力市场交易机制及优化运行,针对我国可再生能源消纳保障机制研究省间风电交易策略,主要研究容如下:(1)概述了国内外电力市场发展现状及交易体系。首先从国外典型电力市场的发展现状展开研究,总结了美国、英国、北欧等国家电力市场的基本情况,分析了各国的电力工业概况和电力改革进程;然后,根据上述各国电力市场现状,从市场运营机构到市场管理等方面介绍了我国的电力市场交易体系;最后,立足电力体制改革的大环境,结合经济发展、资源禀赋等实际情况,基于风火打捆参与电力中长期合约交易、风光储协同参与短期交易电量、风电调峰辅助服务交易三方面分析了风电参与多级电力市场交易路径,为后续章节的电力交易优化模型和运营模式的研究做出铺垫。(2)提出了风电-火电参与电力中长期合约交易优化模型。首先,建立了年度双边协商交易、月度集中竞价交易、挂牌交易的电量确定和电价确定模型,简述了中长期市场合约电量的年分解到月、月分解到日、日分解到时的分解方式。然后,提出了风电和火电参与电力市场的两种方式,综合考虑系统备用、弃风惩罚、绿证交易等问题,基于此建立风火独立参与市场交易模型和联合参与市场交易模型,在满足功率平衡、系统备用等约束条件下研究发电侧收益最大的问题。最后,算例分析结果表明风电和火电联合参与电力市场与单独参与相比,具有额外效益,克服了风电出力波动给系统带来的威胁,有效提高能源利用效率。(3)提出了风险中立情景和风险非中立情景下的风-光-储参与电力日前交易优化模型。首先,建立了风-光-储系统不确定性分析模型及其处理方法;其次,分别构建了风险中立情景下的风-光-储独立参与日前交易和合作参与日前交易的优化模型。然后,构建了基于CvaR的风险非中立下风-光-储参与日前交易优化模型,研究在不同风险置信水平情景下,风-光-储协同参与电力日前交易的效益。最后,选取了典型地区进行了算例分析,提出了考虑清洁能源出力不确定性及风险性的风-光-储协同参与电力日前交易的最优策略。(4)提出了风电-抽水蓄能电站参与电力实时竞价交易模型。风电-抽水蓄能联营能够增加风力发电的消纳率,且风电-抽水蓄能系统由于具有了一定的功率调控能力,其参与电力实时市场获得了盈利的能力。针对风电-抽水蓄能联营参与多时间尺度电力现货市场竞价的问题,考虑风电出力及市场结算价格的不确定性,关注日前市场与实时市场的联动关系,构建了风电-抽水蓄能系统多时间尺度竞价优化模型,在长时间尺度风电-抽水蓄能竞价优化模型中,对风电出力及实时市场平衡价格的不确定性,分别使用随机优化技术和鲁棒优化技术进行处理,并构建了基于条件风险机制(Conditional Value at Risk,CVaR)的日前出力申报决策优化模型;在短时间尺度风电-抽水蓄能竞价优化模型中,引入模型预测控制(model predictive control,MPC)方法,基于支持向量机模型(Support Vector Machines,SVM)对风电出力及实时市场平衡价格进行滚动预测,并构建了实时出力申报决策优化模型对控制变量(实时市场出力申报量)进行控制优化,最后,加入反馈矫正环节形成闭环控制,从而实现实时市场竞价的滚动优化过程,通过滚动优化,实现不确定性变量的提前预测值与实际发生值的逼近,保证实时竞价优化结果的准确性。(5)提出了火电-储能-需求响应联合参与风电调峰交易和效益补偿优化模型。从源荷两侧入手,引入需求响应机制,提出火电机组不同调峰阶段能耗成本模型,构建火电、储能与需求响应联合开展风电调峰交易优化模型;进一步,对比分析火电、储能、风电和需求响应合作和非合作时的运营收益,通过分析不同主体的效益变动情况,引入Sharply值法,构造火电、储能、需求响应联合调峰交易补偿机制;最后,选择中国东北某局域电网作为仿真对象。所提多源调峰交易成本测算模型,有效描述了不同调峰源的调峰成本。所提火电、储能、需求响应多源调峰交易多目标优化模型,能够兼顾调峰交易的经济性和环境性。相比火电、储能、需求响应独立调峰情景,当火电、储能和需求响应联合调峰时,调峰交易方案达到最优,表明两者间具有协同优化效益。所提火电、储能、需求响应多源调峰交易补偿机制,实现各调峰主体均能按照贡献率获取增量收益,实现调峰效益的最优化分配。(6)分析了风电参与跨省区电力市场消纳交易保障机制。首先,从政策内容解析、政策制定历程与调整、政策作用影响三个方面展开,梳理了可再生能源电力消纳保障机制政策。然后通过分析累计消纳权重达标值和测算电力交易需求量,建立了跨省区需求量交易模型和风电消纳水平评估模型,并以某省电网为研究对象进行实例分析,结果表明,进一步完善可再生能源电力市场交易机制能够打破省间市场交易屏障,通过市场化方式提升可再生能源消纳量。最后,从市场机制短期发展、运行机制短期发展、可再生能源消纳机制远景三个方面给出风电参与可再生能源消纳机制的发展建议,针对可再生能源参与市场面临的问题,需要不断完善市场交易机制,形成科学合理的消纳权重责任考核机制,促进清洁能源消纳量。

二、开展火电机组调峰试验研究 确保电网安全稳定运行(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、开展火电机组调峰试验研究 确保电网安全稳定运行(论文提纲范文)

(1)新配额制下高比例可再生能源消纳优化研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 问题的引出及研究意义
    1.2 文献综述
        1.2.1 可再生能源消纳影响因素研究
        1.2.2 可再生能源配额制研究
        1.2.3 基于系统优化理论的可再生能源消纳研究
        1.2.4 基于多尺度电力市场的可再生能源消纳研究
    1.3 主要研究内容和创新点
        1.3.1 主要研究内容
        1.3.2 主要创新点
        1.3.3 研究技术路线
第2章 新配额制下高比例可再生能源消纳相关理论基础
    2.1 可再生能源消纳的电力系统灵活性基础
    2.2 基于新配额制的可再生能源消纳优化研究
    2.3 基于系统优化理论的可再生能源经济消纳优化方法
        2.3.1 电力系统优化理论基础
        2.3.2 基于SCUC和SCED的市场出清模型
        2.3.3 不确定性问题的优化方法
    2.4 基于多尺度电力市场交易体系的可再生能源消纳
    2.5 本章小结
第3章 高比例可再生能源消纳优化模型及应用研究
    3.1 高比例可再生能源消纳优化模型
        3.1.1 目标函数
        3.1.2 约束条件
    3.2 西北地区案例介绍
        3.2.1 数据库来源
        3.2.2 电网结构相关参数设定
        3.2.3 电源结构相关参数设定
        3.2.4 负荷特性相关参数设定
    3.3 高比例可再生能源灵活消纳措施情景设定
        3.3.1 电网侧灵活消纳措施情景设定
        3.3.2 需求侧灵活消纳措施情景设定
        3.3.3 电源侧灵活消纳措施情景设定
    3.4 高比例可再生能源灵活消纳措施经济效果评估
        3.4.1 电网侧灵活消纳措施效果评估
        3.4.2 需求侧灵活消纳措施效果评估
        3.4.3 电源侧灵活消纳措施效果评估
    3.5 本章小结
第4章 新配额制下高比例可再生能源消纳优化模型
    4.1 新配额制的内涵
    4.2 新配额制下高比例可再生能源经济消纳优化模型
        4.2.1 模型构建
        4.2.2 参数设置
    4.3 新配额制下高比例可再生能源低碳消纳优化模型
        4.3.1 模型构建
        4.3.2 参数设置
    4.4 新配额制下高比例可再生能源经济与低碳双目标消纳优化模型
        4.4.1 模型构建
        4.4.2 参数设置
    4.5 本章小结
第5章 新配额制下高比例可再生能源消纳优化模型的应用研究
    5.1 新配额制下高比例可再生能源经济消纳的量化分析
        5.1.1 新配额制对经济消纳的影响
        5.1.2 新配额制下灵活消纳措施效果对比
        5.1.3 新配额制实施前后灵活消纳措施效果对比分析
    5.2 新配额制下高比例可再生能源低碳消纳的量化分析
    5.3 新配额制下高比例可再生能源低碳消纳和经济消纳对比分析
    5.4 新配额制下的经济与低碳双目标消纳的量化分析
    5.5 本章小结
第6章 新配额制下基于市场交易的高比例可再生能源消纳优化模型及应用研究
    6.1 新配额制下基于市场交易的高比例可再生能源消纳优化模型
        6.1.1 基于确定性成本报价的电能量和辅助服务市场联合出清模型
        6.1.2 基于不确定成本报价的电能量和辅助服务市场联合出清模型
    6.2 新配额制下西北地区高比例可再生能源市场化消纳结果分析
        6.2.1 基于确定性成本报价的双市场联合出清结果分析
        6.2.2 基于不确定成本报价的双市场联合出清结果分析
        6.2.3 市场化消纳优化与经济低碳消纳优化结果对比
    6.3 本章小结
第7章 研究成果与结论
    7.1 研究成果
    7.2 结论及政策建议
参考文献
附录
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(2)火电机组灵活运行下的负荷频率控制优化研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景、目的及意义
    1.2 研究现状
        1.2.1 纯凝火电机组灵活运行调节特性分析研究现状
        1.2.2 电力系统负荷频率优化控制研究现状
    1.3 论文的主要工作及章节安排
第二章 汽轮机调速系统全工况模型研究
    2.1 汽轮机及其调速系统模型参数的计算方法
    2.2 计算实例
    2.3 仿真分析
        2.3.1 不同工况下响应性能对比
        2.3.2 低负荷下定压、滑压运行方式的影响
        2.3.3 理论分析
    2.4 小结
第三章 火电机组一次调频能力的综合评估
    3.1 理论分析及评估算法描述
        3.1.1 一次调频过程中的机理分析
        3.1.2 算法的整体描述
    3.2 给煤量的能量传递时间计算
        3.2.1 理论分析及解决方法
        3.2.2 协调系统建模及参数估计
    3.3 锅炉蓄热变化量计算
        3.3.1 理论分析及解决方法
        3.3.2 锅炉蓄热变化量的计算
    3.4 计算实例
        3.4.1 锅炉响应时间计算分析
        3.4.2 机组蓄热变化量的计算
        3.4.3 最大支撑幅度计算
    3.5 评估结果分析
    3.6 小结
第四章 火电深度调峰对系统频率稳定性的影响分析
    4.1 机组的响应能力分析
    4.2 不同风电渗透率下的系统仿真模型
        4.2.1 LFC建模
        4.2.2 风电系统建模
        4.2.3 启停调峰
        4.2.4 深度调峰
    4.3 基于简化LFC模型仿真结果与分析
        4.3.1 仿真初始环境设置
        4.3.2 仿真结果
        4.3.3 结果分析
    4.5 小结
第五章 基于功率分配因子动态轨迹优化的多机互补协调优化策略
    5.1 优化控制策略
        5.1.1 问题的提出
        5.1.2 基于动态轨迹规划的功率分配因子优化策略
        5.1.3 优化系统的结构设计
    5.2 算例仿真
        5.2.1 算例分析
        5.2.2 算法稳定性分析
    5.3 小结
第六章 基于改进型模糊自抗扰的优化控制
    6.1 改进型模糊自抗扰控制
        6.1.1 对象模型的变化
        6.1.2 模糊线性自抗扰控制器
        6.1.3 针对迟延时间的改进
    6.2 仿真结果与分析
    6.3 小结
第七章 结论与展望
    7.1 结论
    7.2 展望
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(3)新型电力系统中储能配置优化及综合价值测度研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景及研究意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 储能系统选型的综合评价研究现状
        1.2.2 储能系统规划研究现状
        1.2.3 储能系统价值测度研究现状
        1.2.4 储能系统补偿激励机制研究现状
        1.2.5 现有研究文献评述
    1.3 论文主要研究内容及技术路线
        1.3.1 主要研究内容
        1.3.2 研究方案及技术路线
    1.4 论文主要创新点
第2章 新型电力系统特征及储能应用分析
    2.1 新型电力系统特征分析
    2.2 新型电力系统中的储能应用分析
        2.2.1 储能在发电领域的应用
        2.2.2 储能在电力输配领域的应用
        2.2.3 储能在用户侧领域的应用
    2.3 储能系统的类型及技术特性分析
        2.3.1 储能技术类型
        2.3.2 储能技术特性需求分析
        2.3.3 储能技术对比分析
    2.4 本章小结
第3章 储能在新型电力系统中多应用场景选型研究
    3.1 储能在新型电力系统中多应用场景选型指标体系构建
        3.1.1 初始指标体系构建
        3.1.2 基于模糊德尔菲法的指标体系筛选
    3.2 基于BBWM-FCPT的新型电力系统储能多场景选型模型构建
        3.2.1 贝叶斯最优最劣法
        3.2.2 模糊累积前景理论
        3.2.3 基于BBWM-FCPT的储能多应用场景选型模型构建
    3.3 储能不同应用场景选型结果
        3.3.1 计算标准化决策矩阵
        3.3.2 储能各应用场景下最优选型评价结果
    3.4 储能不同应用场景选型结果讨论
        3.4.1 储能选型结果讨论
        3.4.2 敏感性分析
        3.4.3 方法比较分析
    3.5 本章小结
第4章 储能在新型电力系统中考虑多元随机干扰的选址定容研究
    4.1 新型电力系统储能选址定容模型
        4.1.1 储能选址定容模型目标函数
        4.1.2 储能选址定容模型约束条件
    4.2 新型电力系统中多元随机干扰不确定性处理及模型鲁棒改造
        4.2.1 新型电力系统中多元随机干扰不确定性处理
        4.2.2 考虑多元随机干扰的储能选址定容模型鲁棒改造
    4.3 考虑新型电力系统中多元随机干扰的储能选址定容模型求解方法
        4.3.1 上层模型的求解方法
        4.3.2 下层模型的求解方法
    4.4 算例分析
        4.4.1 算例介绍和相关参数的取值
        4.4.2 结果分析
    4.5 本章小结
第5章 新型电力系统中储能综合价值测度研究
    5.1 外部性视角下储能系统综合价值机理分析
        5.1.1 储能系统给发电厂商带来的正外部性分析
        5.1.2 储能系统给电网公司带来的正外部性分析
        5.1.3 储能系统给电力用户带来的正外部性分析
        5.1.4 储能系统给环境带来的正外部性分析
    5.2 新型电力系统中储能综合价值测度模型构建
        5.2.1 新型电力系统中储能综合价值测度模型构建思路
        5.2.2 计及外部性的储能综合价值测度模型目标函数
        5.2.3 计及外部性的储能综合价值测度模型约束条件
    5.3 算例分析
        5.3.1 算例介绍和相关参数的取值
        5.3.2 结果分析
    5.4 本章小结
第6章 新型电力系统中储能综合价值补偿机制研究
    6.1 计及储能综合价值影响的经济性分析
        6.1.1 计及综合价值的储能技术经济分析
        6.1.2 计及综合价值的储能盈亏平衡分析
    6.2 基于改进SHAPLEY值法的储能综合价值补偿机制设计
        6.2.1 我国储能系统补偿政策现状分析
        6.2.2 传统Shapley值法基础理论模型
        6.2.3 基于改进的Shapley值储能综合价值补偿机制设计
        6.2.4 算例分析
    6.3 新型电力系统中储能综合价值补偿机制保障措施
    6.4 本章小结
第7章 研究成果和结论
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(4)基于燃煤机组深度调峰安全性条件下负荷优化分配(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 课题背景及意义
    1.2 国内外研究现状
        1.2.1 机组负荷分配研究现状
        1.2.2 汽轮机暂态工况下寿命损耗研究现状
        1.2.3 辅助服务市场研究现状
    1.3 本文主要研究内容
第2章 负荷优化分配目标函数的确定
    2.1 目标函数数学模型
        2.1.1 负荷分配经济性指标
        2.1.2 负荷分配快速性指标
    2.2 机组运行约束条件
        2.2.1 负荷平衡约束
        2.2.2 机组输出功率上下限约束
        2.2.3 机组变负荷速率约束
    2.3 厂级机组负荷分配目标函数模型优化
    2.4 本章小结
第3章 机组煤耗特性曲线的确定与动态计算
    3.1 煤耗特性曲线的计算
        3.1.1 机组标准煤耗率的确定
        3.1.2 锅炉效率
        3.1.3 汽轮机热耗率
        3.1.4 最小二乘法拟合煤耗特性曲线
    3.2 机组煤耗动态计算
        3.2.1 煤耗特性变化
        3.2.2 数据采集
        3.2.3 关联分析
        3.2.4 神经网络训练
    3.3 本章小结
第4章 基于机组运行安全性与经济性的负荷优化分配
    4.1 有限元计算模型
        4.1.1 汽轮机概况
        4.1.2 温度场计算模型
        4.1.3 边界条件
    4.2 转子寿命诊断方法
        4.2.1 低周疲劳影响因素
        4.2.2 疲劳寿命曲线
        4.2.3 寿命损耗计算
    4.3 温度场与应力场计算
        4.3.1 启动过程
        4.3.2 变负荷运行过程
        4.3.3 寿命损耗分析
    4.4 电力市场辅助服务
        4.4.1 辅助服务市场的作用
        4.4.2 辅助服务市场收益机制
    4.5 智能优化负荷分配
        4.5.1 遗传算法简介
        4.5.2 基于遗传算法的多目标负荷分配优化
        4.5.3 算例分析
    4.6 本章小结
第5章 结论与展望
    5.1 工作成果与结论
    5.2 展望
参考文献
致谢

(5)分布式资源聚合虚拟电厂多维交易优化模型研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 虚拟电厂研究现状
        1.2.2 电力市场发展现状
        1.2.3 虚拟电厂市场交易研究现状
    1.3 论文主要研究内容和创新点
        1.3.1 论文主要研究内容
        1.3.2 论文研究技术路线
        1.3.3 论文主要创新点
第2章 虚拟电厂发展现状及功能分析
    2.1 虚拟电厂概述
        2.1.1 虚拟电厂理论基础
        2.1.2 虚拟电厂的组成与结构
    2.2 典型虚拟电厂项目总结
        2.2.1 国外典型虚拟电厂项目
        2.2.2 国内典型虚拟电厂项目
    2.3 虚拟电厂类型与功能
        2.3.1 需求响应虚拟电厂
        2.3.2 供给侧虚拟电厂
        2.3.3 混合资产虚拟电厂
        2.3.4 虚拟电厂参与电力市场的交易路径分析
    2.4 本章小结
第3章 考虑碳减排目标的虚拟电厂运行优化模型
    3.1 引言
    3.2 虚拟电厂构成单元建模
        3.2.1 微型燃气轮机
        3.2.2 风电机组
        3.2.3 光伏机组
        3.2.4 电转气设备
        3.2.5 需求响应
        3.2.6 储能系统
    3.3 考虑电-气互转的虚拟电厂运行优化模型
        3.3.1 考虑电-气互转的虚拟电厂多目标运行优化模型
        3.3.2 约束条件
        3.3.3 线性化处理
    3.4 算例分析
        3.4.1 基础数据
        3.4.2 算例分析
    3.5 本章小结
第4章 虚拟电厂电力中长期合约交易优化模型
    4.1 引言
    4.2 中长期电力市场特点
        4.2.1 电力市场模式
        4.2.2 中长期市场交易品种
        4.2.3 中长期电力市场交易方式
    4.3 虚拟电厂参与中长期电力市场交易优化分析
        4.3.1 中长期市场交易合约机制
        4.3.2 固定电价合约下虚拟电厂收益分析
        4.3.3 差价合约下虚拟电厂收益分析
    4.4 计及可再生能源衍生品的虚拟电厂中长期合约交易优化分析
        4.4.1 可再生能源配额制及绿色证书机制影响量化分析
        4.4.2 计及可再生能源衍生品的虚拟电厂中长期合约交易决策模型
        4.4.3 算例分析
    4.5 本章小结
第5章 虚拟电厂日前电力市场交易优化模型
    5.1 引言
    5.2 日前交易下虚拟电厂不确定性分析
        5.2.1 虚拟电厂不确定性分析及建模
        5.2.2 结合CVaR的日前市场不确定性综合模型
    5.3 基于EEMD-CS-ELM及CVAR方法的虚拟电厂日前交易优化模型
        5.3.1 虚拟电厂内部不确定性处理
        5.3.2 计及CVaR的虚拟电厂日前交易优化模型
        5.3.3 基于蚁群算法的多目标优化模型求解
    5.4 算例分析
        5.4.1 基于EEMD-CS-ELM的风光出力预测
        5.4.2 虚拟电厂日前交易结果分析
        5.4.3 不同置信水平对虚拟电厂日前交易优化结果的影响
    5.5 本章小结
第6章 虚拟电厂日内-实时交易优化模型
    6.1 引言
    6.2 电力日内-实时市场概述
        6.2.1 日前市场与日内市场关联分析
        6.2.2 日前市场与实时市场关联分析
        6.2.3 虚拟电厂日内市场交易博弈行为分析
    6.3 虚拟电厂参与日前电力市场交易建模
        6.3.1 虚拟电厂参与日前-时前-实时市场交易
        6.3.2 虚拟电厂多阶段交易优化模型
        6.3.3 基于人工鱼群算法的模型求解方法
    6.4 算例分析
        6.4.1 基础数据
        6.4.2 情景设置
        6.4.3 结果分析
    6.5 本章小结
第7章 虚拟电厂参与辅助服务市场交易优化模型
    7.1 引言
    7.2 调峰辅助服务市场环境下虚拟电厂参与路径
        7.2.1 调峰辅助服务市场概述
        7.2.2 虚拟电厂参与辅助服务市场
        7.2.3 虚拟电厂物理模型
    7.3 虚拟电厂辅助服务交易优化模型
        7.3.1 不考虑负荷不确定性下交易优化模型
        7.3.2 计及负荷不确定性基于IGDT的交易优化模型
        7.3.3 优化结果评价指标
    7.4 模型求解算法
        7.4.1 风光不确定性处理算法
        7.4.2 基于PSO的多目标优化模型求解算法
    7.5 算例分析
        7.5.1 情景设置
        7.5.2 基础数据
        7.5.3 确定性优化模型结果分析
        7.5.4 不确定性优化模型结果分析
    7.6 本章小结
第8章 结论与展望
    8.1 研究成果与结论
    8.2 展望
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(6)多电源电力系统多目标优化调度与决策方法研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 选题背景及研究意义
    1.2 国内外研究现状
        1.2.1 电力系统电源规划研究
        1.2.2 电力系统短期优化调度研究
        1.2.3 水风光可再生能源消纳问题研究
        1.2.4 多电网互联互通研究
        1.2.5 电力系统多目标优化调度算法研究
        1.2.6 多属性决策理论研究
    1.3 目前存在的主要问题及发展趋势
    1.4 主要研究内容
第2章 电力系统中长期电源规划
    2.1 引言
    2.2 中期长期电源规划模型
        2.2.1 目标函数
        2.2.2 约束条件
    2.3 基于嵌套POA-DPSA的中长期电源规划模型求解
        2.3.1 模型求解思路
        2.3.2 TSPOA-DPSA算法
        2.3.3 基于嵌套POA-DPSA的模型求解步骤
    2.4 实例应用
        2.4.1 实例背景资料
        2.4.2 结果分析
    2.5 本章小结
第3章 考虑水风光就地消纳的电力系统短期优化调度
    3.1 引言
    3.2 水风光弃电量计算方法
    3.3 含水风光电力系统短期优化调度模型
        3.3.1 目标函数
        3.3.2 约束条件
    3.4 模型线性化
        3.4.1 含0-1变量非线性表达式线性化方法
        3.4.2 基于B-B和B-C非线性表达式的模型线性化
    3.5 实例应用
        3.5.1 实例背景资料
        3.5.2 结果分析
    3.6 本章小结
第4章 考虑水风光外送消纳的多电网互联多目标优化调度
    4.1 引言
    4.2 多电网互联多目标优化调度模型
        4.2.1 目标函数
        4.2.2 约束条件
    4.3 基于RCS-NMOPSO的多电网互联多目标优化调度模型求解
        4.3.1 不等式约束被破坏时的处理方法
        4.3.2 等式约束被破坏时的处理方法
        4.3.3 滚动修正策略(RCS)
        4.3.4 基于RCS-NMOPSO的模型求解步骤
        4.3.5 计算复杂度分析
    4.4 实例应用
        4.4.1 实例背景资料
        4.4.2 结果分析
    4.5 本章小结
第5章 多电网互联多目标优化调度方案决策研究
    5.1 引言
    5.2 基于改进马氏距离TOPSIS
        5.2.1 基于马氏距离TOPSIS及其不足
        5.2.2 基于改进马氏距离TOPSIS
        5.2.3 决策效果测试
    5.3 多电网互联多目标优化调度方案评价指标体系
    5.4 实例应用
        5.4.1 基于改进马氏距离TOPSIS的多电网联合调度方案决策流程
        5.4.2 云南—广东—广西区域电网三网联合调度方案评价
    5.5 本章小结
第6章 结论与展望
    6.1 结论
    6.2 主要创新点
    6.3 展望
参考文献
攻读博士学位期间发表的论文
攻读博士学位期间参加的科研工作
致谢
作者简介

(7)660MW超超临界火电机组深度调峰能力试验研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 课题背景和意义
    1.2 国内外研究动态
        1.2.1 深度调峰下机组经济性研究动态
        1.2.2 深度调峰末级流场研究动态
        1.2.3 叶片强度分析研究动态
    1.3 课题研究内容
2 火电机组调峰方式及影响因素
    2.1 调峰方式分析
        2.1.1 火电机组调峰方式概况
        2.1.2 不同调峰方式对比
        2.1.3 调峰策略对比
    2.2 深度调峰影响因素
        2.2.1 煤质特性的影响
        2.2.2 锅炉低负荷燃烧稳定性
        2.2.3 水动力工况的安全性
    2.3 本章小结
3 西宁火电660MW直流锅炉机组调峰运行优化
    3.1 机组调峰运行各子系统
        3.1.1 锅炉各系统
        3.1.2 机组调峰运行方式
    3.2 西宁火电660MW直流锅炉机组调峰特征
        3.2.1 调峰机组运行方式分析
        3.2.2 最佳运行工况的确定
    3.3 西宁火电660MW直流锅炉机组深度调峰运行特征
        3.3.1 两种运行方式机组经济性比较
        3.3.2 机组复合滑压曲线优化
        3.3.3 污染物排放特性分析
    3.4 直流锅炉电站调峰经济运行
    3.5 本章小结
4 660MW机组直流锅炉性能试验及分析
    4.1 西宁火电660MW机组直流锅炉性能及试验
        4.1.1 西宁火电660MW机组直流锅炉设备及性能
        4.1.2 西宁火电660MW机组直流锅炉性能试验
    4.2 一次风调平试验结果及分析
    4.3 制粉系统试验结果及分析
    4.4 燃烧调整试验结果及分析
    4.5 本章小结
5 结论
    5.1 西宁火电660MW机组直流锅炉深度调峰能力试验结果
参考文献
致谢

(8)可再生能源高渗透率电力系统的有功辅助服务市场机制设计与出清模型研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 电力系统有功辅助服务与灵活性资源需求
        1.2.1 电力辅助服务的概念与分类
        1.2.2 可再生能源高渗透率系统的灵活性需求与应对
    1.3 有功辅助服务市场机制及其研究现状
        1.3.1 有功辅助服务市场机制
        1.3.2 国外有功辅助服务市场机制研究与实践
        1.3.3 我国辅助服务补偿机制与市场机制的研究与实践
        1.3.4 国内外有功辅助服务市场出清模型研究与应用
    1.4 研究内容与章节安排
第2章 可再生能源高渗透率电力系统的有功辅助服务市场机制架构设计
    2.1 概述
    2.2 有功辅助服务市场机制要素分析
        2.2.1 供求机制
        2.2.2 竞争方式
        2.2.3 价格机制
    2.3 电力市场设计对灵活性的传统激励措施
    2.4 基于新需求的有功辅助服务市场机制改进思路
        2.4.1 引入新型灵活性资源
        2.4.2 改进既有辅助服务品种
        2.4.3 新增辅助服务品种
    2.5 有功辅助服务市场总体框架
        2.5.1 市场主体
        2.5.2 时间设置
        2.5.3 网络模型
        2.5.4 交易品种设置
        2.5.5 市场出清目标
        2.5.6 组织方式
    2.6 小结
第3章 可再生能源参与的我国调峰市场机制设计
    3.1 概述
    3.2 调峰市场的设计前提及其属性分析
    3.3 调峰交易机制现状
    3.4 可再生能源参与的调峰交易机制设计
    3.5 可再生能源参与的调峰交易出清模型
    3.6 调峰机制向现货市场的过渡
    3.7 算例验证
    3.8 小结
第4章 面向灵活性的电能与有功辅助服务市场联合出清模型
    4.1 概述
    4.2 电力灵活性资源的主要技术指标
    4.3 机组组合模型对灵活性资源利用率的影响与改进思路
    4.4 面向灵活性的日前市场电能与辅助服务联合出清模型
    4.5 算例验证
    4.6 小结
第5章 调频服务需求量化的数据驱动模型
    5.1 概述
    5.2 数据驱动的有功辅助服务量化方法
    5.3 基于HMM的调频服务需求量化模型
        5.3.1 调频服务需求的分布特征与模型选择
        5.3.2 隐马尔可夫模型
        5.3.3 HMM参数估计
        5.3.4 隐藏状态解码
        5.3.5 数据驱动的有功辅助服务需求预测流程
    5.4 算例验证
    5.5 小结
第6章 需求侧资源参与有功辅助服务市场的投标决策模型
    6.1 概述
    6.2 新型有功辅助服务资源
        6.2.1 需求侧资源
        6.2.2 储能技术
        6.2.3 可再生能源
        6.2.4 虚拟电厂
    6.3 工业用户参与需求响应的投标决策模型
        6.3.1 参与需求响应的工业用户特点
        6.3.2 工业用户短期生产调度模型
        6.3.3 工业用户参与辅助服务市场投标决策模型
    6.4 集成商投标有功辅助服务市场的决策模型
        6.4.1 集成商投标辅助服务市场的决策过程
        6.4.2 辅助服务产品的可用性等效概率
        6.4.3 集成商投标辅助服务市场的机会约束模型
    6.5 算例验证
        6.5.1 工业用户辅助服务市场投标决策算例
        6.5.2 集成商投标有功辅助服务市场算例
    6.6 小结
第7章 结论与展望
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(9)市场环境下储能运营经济性评估及交易优化模型研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 储能参与市场交易容量配置研究现状
        1.2.2 储能参与多级电量市场交易研究现状
        1.2.3 储能参与辅助服务市场交易研究现状
        1.2.4 储能参与交易效益协调机制研究现状
        1.2.5 储能参与市场交易价值评估研究现状
    1.3 论文主要研究内容和创新点
        1.3.1 论文主要研究内容
        1.3.2 论文研究创新点
第2章 国内外储能发展现状及在电力系统应用前景
    2.1 储能技术发展现状及趋势分析
        2.1.1 储能技术发展现状
        2.1.2 储能技术应用现状
    2.2 储能技术发展趋势及相关政策
        2.2.1 储能技术发展趋势
        2.2.2 中国储能技术发展政策
        2.2.3 中国储能发展问题分析
    2.3 储能技术在电力系统中应用现状与前景
        2.3.1 储能产业发展特征分析
        2.3.2 储能在电力系统应用现状
        2.3.3 储能在电力系统应用前景
    2.4 本章小结
第3章 储能发展成本演化趋势及最优设备选型模型
    3.1 储能技术发展成熟度分析
        3.1.1 储能技术类型
        3.1.2 储能技术成熟度
    3.2 储能技术成本演变趋势分析
        3.2.1 储能度电成本测算模型
        3.2.2 储能成本演变趋势分析
        3.2.3 实例分析
    3.3 储能技术设备最优选型模型
        3.3.1 评估指标体系
        3.3.2 最优选型模型
        3.3.3 实证分析
    3.4 储能技术设备最优选址模型
        3.4.1 复杂网络模型的机制
        3.4.2 储能运营商满意度模型
        3.4.3 案例研究
    3.5 本章小结
第4章 储能参与电量市场交易经济性界值分析模型
    4.1 净负荷需求分布曲线分析
        4.1.1 净负荷测算模型
        4.1.2 净负荷需求分布
    4.2 储能最优峰谷分时时段划分
        4.2.1 数据样本集构建
        4.2.2 峰谷时段聚类优化模型
        4.2.3 实例分析
    4.3 储能最优峰谷分时价差测算
        4.3.1 全寿命周期理念
        4.3.2 储能成本-收益分析
        4.3.3 储能峰谷价差测算
        4.3.4 实例分析
    4.4 本章小结
第5章 储能参与电量市场多级协同交易优化模型
    5.1 储能参与电力合约交易协调模型
        5.1.1 不同利益主体效益分析
        5.1.2 不同利益主体效益测算
        5.1.3 不同利益主体效益协调
        5.1.4 实例分析
    5.2 储能参与微网日前交易优化模型
        5.2.1 储能系统动态功率模型
        5.2.2 微网日前交易优化模型
        5.2.3 算例分析
    5.3 储能参与风电实时交易优化模型
        5.3.1 风储联合运行模型
        5.3.2 实时竞价交易模型
        5.3.3 算例分析
    5.4 本章小结
第6章 储能参与辅助服务市场交易经济性界值分析模型
    6.1 储能系统参与调峰交易相关政策
        6.1.1 西北储能调峰政策
        6.1.2 东北储能调峰政策
    6.2 储能参与调峰交易最优容量分析
        6.2.1 净负荷率变化
        6.2.2 储能最优容量比
        6.2.3 实例分析
    6.3 储能参与电网调峰交易价格测算
        6.3.1 储能运营情景分析
        6.3.2 储能运营收益测算
        6.3.3 储能调峰交易价格测算
        6.3.4 实例分析
    6.4 本章小结
第7章 储能参与调峰辅助服务市场交易优化模型
    7.1 电源调峰交易成本测算
        7.1.1 火电调峰成本
        7.1.2 储能系统调峰成本
        7.1.3 灵活性负荷调峰成本
    7.2 储能参与光伏调峰交易优化模型
        7.2.1 光伏调峰交易目标
        7.2.2 光伏调峰约束条件
        7.2.3 实例分析
    7.3 储能参与多源调峰交易优化模型
        7.3.1 多源调峰优化目标
        7.3.2 多源调峰约束条件
        7.3.3 算例分析
    7.4 本章小结
第8章 储能参与电力市场交易价值分析及商业模式
    8.1 储能功能与价值分析
        8.1.1 储能功能作用
        8.1.2 储能价值分析
    8.2 储能参与电力交易价值评估模型
        8.2.1 储能价值评估体系
        8.2.2 储能价值评估模型
        8.2.3 算例分析
    8.3 储能参与电力交易运营商业模式
        8.3.1 不同商业模式对比
        8.3.2 储能运营商业模式
        8.3.3 储能运营商竞争力分析
        8.3.4 储能商业模式盈利性
    8.4 本章小结
第9章 研究成果和结论
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(10)大规模风电参与电力市场交易机制及优化模型研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 风电参与中长期合约交易研究现状
        1.2.2 风电参与日前交易研究现状
        1.2.3 风电参与实时竞价交易研究现状
        1.2.4 风电调峰辅助服务交易研究现状
    1.3 论文主要研究内容和创新点
        1.3.1 论文主要研究内容
        1.3.2 论文研究技术路线
        1.3.3 论文研究创新点
第2章 国内外风电参与电力市场交易现状及交易体系概述
    2.1 国外电力市场发展现状及风电参与交易情况
        2.1.1 美国电力市场现状及风电参与交易情况
        2.1.2 英国电力市场现状及风电参与交易情况
        2.1.3 北欧电力市场现状及风电参与交易情况
    2.2 国内电力市场发展现状及风电参与交易情况
        2.2.1 电力市场概况
        2.2.2 电力市场改革进程
        2.2.3 风电参与市场交易情况
        2.2.4 电力市场未来发展方向
    2.3 国内电力市场交易体系
        2.3.1 中长期交易市场
        2.3.2 日前现货交易市场
        2.3.3 实时交易市场
        2.3.4 辅助服务交易市场
    2.4 风电参与多级电力市场交易路径
        2.4.1 风火打捆参与电力中长期合约交易
        2.4.2 风光储协同参与现货市场
        2.4.3 风火调峰辅助服务交易
    2.5 本章小结
第3章 风电-火电参与电力中长期合约交易优化模型
    3.1 引言
    3.2 中长期电力市场
        3.2.1 中长期电力市场交易方式
        3.2.2 中长期合约电量分解
    3.3 风电-火电参与电力市场交易优化模型
        3.3.1 风电与火电独立参与市场交易
        3.3.2 风电-火电联合参与市场交易
        3.3.3 约束条件
    3.4 算列分析
        3.4.1 基础数据
        3.4.2 算例结果
        3.4.3 结果分析
    3.5 本章小结
第4章 风电-光伏-储能协同参与电力日前交易优化模型
    4.1 引言
    4.2 风-光-储系统不确定性建模及处理
        4.2.1 风-光-储系统不确定性建模
        4.2.2 风-光不确定性处理
    4.3 风险中立情景下风-光-储参与电力日前交易优化模型
        4.3.1 风-光-储参与电力日前交易机制
        4.3.2 风险中立情景下风-光-储参与电力日前交易优化模型
        4.3.3 算例分析
    4.4 风险非中立下风-光-储参与电力日前交易优化模型
        4.4.1 CVaR理论方法
        4.4.2 风险非中立情景下风-光-储参与电力日前交易优化模型
        4.4.3 算例分析
    4.5 本章小结
第5章 风电-抽水蓄能电站参与电力实时竞价交易模型
    5.1 引言
    5.2 电力实时市场概述
        5.2.1 日前市场与实时市场的联动关系
        5.2.2 实时市场中的两种典型结算方式
        5.2.3 多时间尺度竞价优化框架及基本假设
    5.3 长时间尺度风电-抽水蓄能竞价优化模型
        5.3.1 风电-抽水蓄能出力模型
        5.3.2 风电-抽水蓄能日前竞价收益函数
        5.3.3 基于CVaR的长时间尺度竞价优化模型
    5.4 短时间尺度风电-抽水蓄能竞价优化模型
        5.4.1 短时间尺度竞价优化流程
        5.4.2 基于SVM的实时市场滚动预测模型
        5.4.3 实时竞价策略的滚动优化模型
        5.4.4 反馈矫正策略
        5.4.5 算例分析
    5.5 本章小结
第6章 大规模风电并网下火电-储能-DR联合调峰交易优化模型
    6.1 引言
    6.2 不同调峰源参与调峰交易成本
        6.2.1 火电调峰成本
        6.2.2 储能系统调峰成本
        6.2.3 灵活性负荷调峰成本
    6.3 火电-储能-DR联合调峰交易优化模型
        6.3.1 多源调峰交易目标
        6.3.2 多源调峰约束条件
        6.3.3 算例分析
    6.4 火电-储能-DR联合调峰交易补偿机制
        6.4.1 不同主体角色分析
        6.4.2 不同主体效益分析与测算
        6.4.3 不同主体效益协调模型
        6.4.4 算例分析
    6.5 本章小结
第7章 风电参与跨省区电力市场消纳交易保障机制
    7.1 引言
    7.2 可再生能源电力消纳保障机制政策
        7.2.1 政策内容解析
        7.2.2 政策制定历程与调整
        7.2.3 政策作用影响分析
    7.3 风电参与跨省域市场消纳交易保障机制
        7.3.1 累计消纳权重达标值
        7.3.2 电力交易需求量测算
        7.3.3 跨省区需求量交易模型
        7.3.4 风电消纳水平评估模型
        7.3.5 实例分析
    7.4 风电参与可再生能源消纳机制发展建议
        7.4.1 市场机制短期发展建议
        7.4.2 运行机制短期调整建议
        7.4.3 可再生能源消纳机制远景
    7.5 本章小结
第8章 研究成果和结论
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

四、开展火电机组调峰试验研究 确保电网安全稳定运行(论文参考文献)

  • [1]新配额制下高比例可再生能源消纳优化研究[D]. 卜银河. 华北电力大学(北京), 2021
  • [2]火电机组灵活运行下的负荷频率控制优化研究[D]. 杜鸣. 华北电力大学(北京), 2021(01)
  • [3]新型电力系统中储能配置优化及综合价值测度研究[D]. 陆昊. 华北电力大学(北京), 2021
  • [4]基于燃煤机组深度调峰安全性条件下负荷优化分配[D]. 慕昀翰. 华北电力大学(北京), 2021(01)
  • [5]分布式资源聚合虚拟电厂多维交易优化模型研究[D]. 吴静. 华北电力大学(北京), 2021(01)
  • [6]多电源电力系统多目标优化调度与决策方法研究[D]. 赵亚威. 华北电力大学(北京), 2021(01)
  • [7]660MW超超临界火电机组深度调峰能力试验研究[D]. 万宏斌. 兰州交通大学, 2020(02)
  • [8]可再生能源高渗透率电力系统的有功辅助服务市场机制设计与出清模型研究[D]. 杨萌. 华北电力大学(北京), 2020(06)
  • [9]市场环境下储能运营经济性评估及交易优化模型研究[D]. 秦云甫. 华北电力大学(北京), 2020(06)
  • [10]大规模风电参与电力市场交易机制及优化模型研究[D]. 邢通. 华北电力大学(北京), 2020

标签:;  ;  ;  ;  ;  

开展火电机组调峰试验研究,保障电网安全稳定运行
下载Doc文档

猜你喜欢